Exercise 1

A particle moves according to a law of motion $s=f(t), t \geq 0$, where t is measured in seconds and s in feet.
(a) Find the velocity at time t.
(b) What is the velocity after 1 second?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the first 6 seconds.
(f) Draw a diagram like Figure 2 to illustrate the motion of the particle.
(g) Find the acceleration at time t and after 1 second.
(h) Graph the position, velocity, and acceleration functions for $0 \leq t \leq 6$.
(i) When is the particle speeding up? When is it slowing down?

$$
f(t)=t^{3}-8 t^{2}+24 t
$$

Solution

Part (a)
To find the velocity, take the derivative of the position function.

$$
\begin{aligned}
v(t) & =\frac{d s}{d t} \\
& =\frac{d}{d t}\left(t^{3}-8 t^{2}+24 t\right) \\
& =3 t^{2}-16 t+24
\end{aligned}
$$

Part (b)
The velocity after 1 second has elapsed is

$$
v(1)=3(1)^{2}-16(1)+24=11 \frac{\text { feet }}{\text { second }} .
$$

Part (c)

To find when the particle is at rest, set the velocity function equal to zero and solve the equation for t.

$$
\begin{gathered}
v(t)=0 \\
3 t^{2}-16 t+24=0 \\
t=\frac{16 \pm \sqrt{16^{2}-4(3)(24)}}{2(3)} \\
t=\frac{16 \pm \sqrt{-32}}{6} \\
t=\frac{16 \pm 4 i \sqrt{2}}{6}
\end{gathered}
$$

Since no real values of t satisfy the equation, the particle is never at rest.

Part (d)

Since $v(t)=3 t^{2}-16 t+24$ is a continuous function, $v(0)=24$ is positive, and $v(t)$ never crosses the t-axis, $v(t)$ is always positive. This means the particle is always moving in the positive direction.

Part (e)
The total distance traveled is

$$
\begin{aligned}
s(6)-s(0) & =\left[(6)^{3}-8(6)^{2}+24(6)\right]-\left[(0)^{3}-8(0)^{2}+24(0)\right] \\
& =72-0 \\
& =72 \text { feet. }
\end{aligned}
$$

Part (f)

Below is an illustration of the particle's motion from $t=0$ to $t=6$.

Part (g)

Calculate the derivative of the velocity to get the acceleration.

$$
\begin{aligned}
a(t) & =\frac{d v}{d t} \\
& =\frac{d}{d t}\left(3 t^{2}-16 t+24\right) \\
& =6 t-16
\end{aligned}
$$

The acceleration after 1 second is

$$
a(1)=6(1)-16=-10 \frac{\text { feet }}{\text { second }^{2}} .
$$

Part (h)

Below is a plot of the position, velocity, and acceleration versus time for $0 \leq t \leq 6$.

Part (i)
The particle is speeding up when

$$
\begin{gathered}
a(t)>0 \\
6 t-16>0 \\
6 t>16 \\
t>\frac{8}{3} \text { seconds, }
\end{gathered}
$$

and the particle is slowing down when

$$
\begin{gathered}
a(t)<0 \\
6 t-16<0 \\
6 t<16 \\
t<\frac{8}{3} \text { seconds. }
\end{gathered}
$$

